Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 43(2): 217-224, Feb. 2010. ilus, graf
Article in English | LILACS | ID: lil-538233

ABSTRACT

Bovine herpesvirus type 5 (BoHV-5) is an important pathogen of cattle in South America. We describe here the construction and characterization of deletion mutants defective in the glycoprotein E (gE) or thymidine kinase (TK) gene or both (gE/TK) from a highly neurovirulent and well-characterized Brazilian BoHV-5 strain (SV507/99). A gE-deleted recombinant virus (BoHV-5 gE∆) was first generated in which the entire gE open reading frame was replaced with a chimeric green fluorescent protein gene. A TK-deleted recombinant virus (BoHV-5 TK∆) was then generated in which most of the TK open reading frame sequences were deleted and replaced with a chimeric â-galactosidase gene. Subsequently, using the BoHV-5 gE∆ virus as backbone, a double gene-deleted (TK plus gE) BoHV-5 recombinant (BoHV-5 gE/TK∆) was generated. The deletion of the gE and TK genes was confirmed by immunoblotting and PCR, respectively. In Madin Darby bovine kidney (MDBK) cells, the mutants lacking gE (BoHV-5 gE∆) and TK + gE (BoHV-5 gE/TK∆) produced small plaques while the TK-deleted BoHV-5 produced wild-type-sized plaques. The growth kinetics and virus yields in MDBK cells for all three recombinants (BoHV-5 gE∆, BoHV-5 TK∆ and BoHV-5 gE/TK∆) were similar to those of the parental virus. It is our belief that the dual gene-deleted recombinant (BoHV-5 gE/TK∆) produced on the background of a highly neurovirulent Brazilian BoHV-5 strain may have potential application in a vaccine against BoHV-5.


Subject(s)
Animals , Cattle , Gene Deletion , /genetics , Thymidine Kinase/genetics , Viral Envelope Proteins/genetics , Defective Viruses/genetics , Electrophoresis, Polyacrylamide Gel , Green Fluorescent Proteins/genetics , /immunology , /pathogenicity , Immunoblotting , Polymerase Chain Reaction , Recombination, Genetic/genetics , Thymidine Kinase/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics
2.
Braz. j. med. biol. res ; 43(2): 150-159, Feb. 2010. tab, ilus
Article in English | LILACS | ID: lil-538237

ABSTRACT

Bovine herpesvirus 5 (BoHV-5), the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99). The recombinants are defective in glycoprotein E (BoHV-5gEÄ), thymidine kinase (BoHV-5TKÄ) and both proteins (BoHV-5gEÄTKÄ). Rabbits inoculated with the parental virus (N = 8) developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi). Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEÄ developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKÄ (N = 8) or BoHV-5gEÄTKÄ (N = 8) remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx) administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKÄ and BoHV-5gEÄTKÄ are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.


Subject(s)
Animals , Rabbits , Herpesviridae Infections/virology , /pathogenicity , Herpesvirus Vaccines/immunology , Viral Envelope Proteins/immunology , Viral Proteins/immunology , Brain/virology , DNA, Viral/analysis , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Herpesviridae Infections/immunology , Herpesviridae Infections/prevention & control , /genetics , /immunology , Mutation , Thymidine Kinase/genetics , Virus Replication , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology , Virulence/genetics , Virus Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL